 A Simple Computer

Introduction

The Parts of a Computer

To many people a computer consists of three parts: the keyboard, where you type things in, the display screen, where you see things written, and a mysterious box that has lots of wires. This paper will help you understand what goes on inside that box. It won’t teach you how to use a computer, but it should help you gain a better appreciation for what a computer does and what programmers must do to write the programs you use.

The first thing to realize when talking about how computers work is that everything inside the computer and on its disks are just numbers. A computer can store letters, pictures, and sounds, and it can put pretty pictures on the screen and make funny noises come out of that box, but it is doing all this with just numbers. Later on we will explain how this is done, but for now, just remember: it’s all done with numbers.�

The strange box has many names. Some call it the CPU, which stands for Central Processing Unit; others the processor; others call it the computer. Actually, the CPU (or processor) is only one of the things inside the box. Most of the stuff in there are electronic boards and circuits� that control what the computer does and help connect it to the outside world. For example, there is a device that connects to the keyboard and tells the computer what keys you are pressing. There is also a device that writes characters on the display screen. There might be other devices that connect to things like disk drives� and CD-ROMs. The CPU is the main device, however. It is the device that controls all the other things inside the box, as well as the things that are connected to it. Another important thing inside the box is a set of boards (or chips) that make up the memory of the computer.

The term memory is sometimes misleading when talking about computers. Some people use the word to mean how much data can be stored in the computer. This isn’t really memory, it is disk space. When computer people talk about memory, they are talking about storage places called RAM� inside the box that the computer can use when running a program. These storage places are much different than disk space. A computer can operate without a disk drive, but it can’t operate without memory. Memory is where the computer puts the program it is going to run. It can’t run a program unless it is loaded into memory. Another difference between memory and disk space is that when you turn a computer off, whatever was in memory is lost. Whatever was on disk remains there.

When you buy some software, you get a bunch of floppy disks or maybe a CD-ROM containing some number of files�. These files are the programs and data that make up your software package. In order to use it on your computer, you usually run some kind of installation program that copies files from the floppies onto your hard disk. In the case of a CD-ROM, it usually copies only some of the files onto your hard disk. Your software package is now on your hard disk.

When you run the program, the computer reads the program from the hard disk and puts it into memory so that it can execute your program. Hard disks make it easier for you to run programs, but in order to run them, the computer must read them into memory.� The computer stores two types of things in memory: instructions and data. The instructions are commands that the computer understands. For example, there might be an add instruction that tells the computer to add two numbers together. Whenever the computer is doing something, it is executing an instruction. Data, on the other hand, is information that the computer (actually the instructions) use when executing the program. For example, when the computer executes the add instruction to add two numbers, the two numbers are data.

What’s Inside the Box

To help this make more sense, we will describe the insides of a simple computer. There isn’t any real computer like this one, but it should give you the flavor of how a real computer works. In this section you will learn a little about the different parts of the inside of a computer. In the next section you will learn about the instructions that the computer understands. At various points in this section, you will see some examples that will help you to make sense out of all this. See � REF _Ref318460263 * MERGEFORMAT �Figure 1� for a diagram of our simple computer.

The two parts of the computer box that we will talk about first are the CPU and the Memory. You can think of the Memory as cubby holes in a desk, or a bunch of mail boxes in a post office. Memory is a collection of places where the computer can store numbers. For the purpose of this discussion, we will call them locations. Each location has a number or address associated with it; this is how the computer refers to the location. If we think of memory as a long line of storage locations, then the address of the first location is zero, the next is one, etc. The address of a memory location is like its name. When we talk about location 0, location 124, etc. we are talking about the location whose address is 0, 124, etc. Each location can hold a two digit number from 00 to 99.

Now 99 isn’t a very big number, and our computer won’t be much good if it can only work with numbers between 0 and 99. So whenever we do arithmetic, we will work with two memory locations instead of just one. The first location contains the thousands and hundreds digits, while the second location will contain the tens and units digits. So if we have two locations that contain 12 and 34, that will represent 1,234. That way we can work with numbers as big as 9,999 instead of just 99. The first location is called the most significant location, since it represents the bigger numbers; the second location is called the least significant location. The two locations together is called a word. Our computer has a word size of 4 digits, meaning that the largest number we can do arithmetic with is 4 digits long.

The CPU has some very special (and very fast) memory called registers. There are three major registers: the Accumulator, the Instruction Counter, and the Condition Code. A register is very much like regular memory except: (a) it is inside the CPU instead of outside, where regular memory is; (b) it is much faster than regular memory; (c) it can do some things that regular memory can’t do.

The accumulator is the only register that can do arithmetic. The accumulator can hold up to 4 digits; it takes two memory locations to fill up an accumulator. The instruction counter (IC) is also two locations long and contains the address of the next instruction to be executed. The condition code register (CC) is only one location, and is used by some instructions to report the results of an operation. We’ll explain more about the CC later.

When the computer is running, it looks at the instruction counter (IC) for the address (location) of the next instruction. The instruction counter is updated based on the length of the current instruction. The computer then executes that instruction�. It then looks at the IC for the address of the next instruction, updates the IC, and then executes it. This continues until the computer executes a quit instruction

CPU

Here is the CPU with its registers:

ACC��

IC��

CC��

Memory

Here is a diagram of the first few memory locations with their addresses:

00�01�02�03�04�05�06�07�08�09��10�11�12�13�14�15�16�17�18�19��20�21�22�23�24�25�26�27�28�29��	. . .

	etc.

Figure � SEQ Figure * ARABIC �1� - Diagram of a simple computer

Instructions

Instructions tell the computer what to do. The Instruction Counter contains the address (location) of the next instruction to be executed. Since numbers are the only things a computer understands, an instruction is a bunch of numbers that tell the computer what to do. Some instructions are only one memory location long. Other instructions are up to four memory locations long. The first location of every instruction contains a number that is called the operation code or opcode for short. Each instruction has a unique opcode from 00 to 99. No two instructions share the same opcode. You can think of the opcode as the name of the instruction (since a computer only understands numbers, it makes sense that the name of an instruction would be a number.) The opcode identifies what instruction is to be executed. (Look at the first couple of instructions and you’ll get the idea.)

When the computer is running, it looks at the Instruction Counter (IC) to see where the next instruction is located. It then gets the contents of that memory location (which contains the opcode) to find out what instruction is to be executed. By examining the opcode, the computer knows how long the instruction is. At this point the computer does two things: it adds the length of this new instruction to the IC (which means that the IC now contains the address of the next instruction after the current one) and reads the rest of the instruction and/or any other data needed by the instruction. Finally, the computer executes the actual instruction. This process is repeated until a quit instruction is found, or the power is turned off.

The First Few Instructions

Let’s look at a few instructions that our simple computer understands. Remember that an instruction is a bunch of numbers that tells the computer what to do. Some of them take up only one memory location. Most of them take up three memory locations. All of them are just a bunch of numbers.

The first location of an instruction always contains the opcode, indicating the specific instruction. Most instructions are three locations long; the next two locations contain the address (Addr) of the data for this instruction.

Opcode 01 - Load

01�Addr��Instruction 01 (Load) tells the computer to load the accumulator with the contents of the specified address. Since the accumulator is two locations long, the computer will copy the contents of the two memory locations starting at the specified address. The computer will get the address contained in the two locations following the instruction code, fetch the contents of the two locations starting at that address, and move them into the accumulator.

For example, if the IC contains 0020, and locations 20 through 22 contain 01 23 45, then the instruction is 01 2345. This means that the computer will copy the contents of locations 2345 and 2346 into the accumulator. If the contents of locations 2345 and 2346 contain 00 and 05, then the accumulator will be set to 0005. Whatever was in the accumulator before the instruction was executed will be destroyed. Locations 2345 and 2346 will be unchanged.

Opcode 02 - Store

02�Addr��Instruction 02 (Store) tells the computer to copy the contents of the accumulator into the two memory locations starting at the specified address. For example, if the instruction is 02 1234, then the contents of the accumulator is copied to locations 1234 and 1235. Whatever used to be in those locations will be destroyed. The accumulator will be unchanged.

Opcode 03 - Add

03�Addr��Instruction 03 (Add) tells the computer to add the contents of the memory location to the accumulator. The two locations starting at the specified address are added to the accumulator. For example, if the accumulator contains 0010, the instruction is 03 0050, and locations 50 and 51 contain 0130, the accumulator will contain 0140. Locations 50 and 51 will be unchanged.

This instruction sets the condition code (CC). If the result was zero, CC is set to 1. If the result is positive, CC is set to 2. If the result is negative, the CC is set to 4. If an overflow occurred (the result couldn’t fit in the accumulator), CC is set to 8.

Opcode 99 - Quit

99��This instruction tells the computer to stop the program.

Example Program - Add Two Numbers

Accumulator

00�00��Instruction Counter

00�00��Condition Code

00��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�01�00�10�03�00�12�02�00�14�99��10�00�01�00�02�00�00�00�00�00�00��Figure � SEQ Figure * ARABIC �2� - Program to add two numbers

We now know enough instructions to add two numbers together. Our program will add the two numbers in locations 10 and 12, and save the result in location 14. � REF _Ref318460178 * MERGEFORMAT �Figure 2� shows the CPU and the program in memory before it starts.

Program walk-through

Accumulator

 00�01��Instruction Counter

00�03��Condition Code

00��Status after Load instruction

Since the instruction counter is zero, the computer goes to location 0 to examine the opcode. It finds a 01, which is a load instruction. This load instruction includes the next two locations, so the computer increments the IC to be 0003 and gets locations 1 and 2. The instruction is 01 0010, which identifies the address as 0010, or location 10. It tells the computer to load the accumulator with the contents of locations 10 and 11, which contain 00 01. As a result, the accumulator now contains 0001 and the IC is 0003.

Accumulator

 00�03��Instruction Counter

00�06��Condition Code

02��Status after Add instruction

Accumulator

 00�03��Instruction Counter

00�09��Condition Code

02��Status after Store Instruction

When the load instruction finishes, the computer looks at the IC again to see what the next instruction is. Since the IC contains 0003, the computer goes to location 3 to get the instruction opcode, which is 03, or the add instruction. An add instruction is 3 locations long, so the computer increments the IC to 0006 and gets the contents of locations 4 and 5. The add instruction is 03 0012, so the computer adds the contents of locations 12 and 13 (0002) to the accumulator, making it now 0003. The add instruction affects the CC register. Since the result was positive, the condition code is set to 2.

Since the instruction counter is now 0006, the computer goes to location 6 to look at the opcode of the next instruction, which is a 02, or store command. The store command is 3 locations long, so the computer increments the IC by 3 to become 0009, and gets the contents of locations 7 and 8. The store command is 03 0014, which tells the computer to store the contents of the accumulator into locations 14 and 15. Location 14 now contains 00, and location 15 contains 03.

The computer then looks at the instruction counter and goes to location 9 to get the next opcode to execute. It finds 99, which is the quit instruction. The quit instruction is one character long, so the computer increments the IC to 0010, and the program terminates. The resulting configuration of the computer is shown in � REF _Ref318460133 * MERGEFORMAT �Figure 3�.

Accumulator

 00�03��Instruction Counter

00�10��Condition Code

02��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�01�00�10�03�00�12�02�00�14�99��10�00�01�00�02�00�03�00�00�00�00��Figure � SEQ Figure * ARABIC �3�- Computer after adding two numbers

More Instructions

Now that we have a better idea of how our computer works, let’s look at some more instructions. Then we will write some more programs.

Opcode 04 - Subtract

04�Addr��This instruction tells the computer to subtract the contents of the memory location from the accumulator. The condition code is set the same as the Add instruction.

Opcode 05 - Multiply

05�Addr��This instruction tells the computer to multiply the contents of the memory location with the contents of the accumulator. The contents of the accumulator will be replaced with the result. The condition code is set the same as the Add instruction.

Opcode 06 - Divide

06�Addr��This instruction tells the computer to divide the contents of the two memory locations by the contents of the memory location. The result is whole number (also called an integer), meaning the remainder is discarded. For example, if 6 is divided by 4, the result is 1 (because 4 goes into 6 1 time, with a remainder of 2). The condition code is set the same as the Add instruction.

Opcode 07 - Modulo

07�Addr��This instruction is similar to the divide instruction except that the remainder is left in the accumulator. For example, if 6 is divided by 4, the result is 2 (see the 06 divide instruction). The condition code is set the same as the Add instruction.

Opcode 08 - Branch on Condition

08�Cs�Addr��This instruction is a little tricky, so don’t worry about it if you don’t understand it. We will explain it in more detail later. Basically, this instruction tells the computer that, under certain conditions, it should not execute the next instruction, but the instruction specified by the contents of the address.

This instruction is 4 locations long: 1 for the opcode, 1 for the Cs, and 2 for the branch address. The computer looks at the condition code (CC) in the CPU and the condition specification (Cs) in the instruction. If the CC matches the Cs, then it will copy the contents of the two locations starting at Addr to the IC. This means that the next instruction to be executed will be the one whose address is specified by the Addr portion of the instruction. If the CC doesn’t satisfy the Cs, then nothing happens, which means that the instruction following the branch instruction will be executed.

For example, if the instruction is 08 06 1234, then the Cs is 6 and the address is 1234. If locations 1234 and 1235 contain 2345, then if the branch is taken, 2345 will be copied to the Instruction Register. This means that the next instruction to be executed will be 2345, not the instruction following the branch instruction.

Table � SEQ Table * ARABIC �1�- Condition Specification for Branch instruction

CC \ Cs�0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15��1��Y��Y��Y��Y��Y��Y��Y��Y��2���Y�Y���Y�Y���Y�Y���Y�Y��4�����Y�Y�Y�Y�����Y�Y�Y�Y��8���������Y�Y�Y�Y�Y�Y�Y�Y��The Cs can be from 0 to 15. The Condition Specification is shown in � REF _Ref318461252 * MERGEFORMAT �Table 1�. The value of Cs is shown along the top of the table; the value of the CC is shown down the left side. To find out if an instruction will branch, look where the CC row and Cs column meet. If that square contains a ‘Y’, then a branch will occur; otherwise the following instruction will be executed next.

Looking at this chart, we can see that if Cs is 1, then a branch will happen only if CC is 1. If Cs is 3, a branch will happen if CC is either 1 or 2. Notice that if you add up the values of the CC’s that cause a branch for a given Cs, the total will be the same as the Cs itself. For example, if you want to branch if the CC is 2 or 4, then you would use a Cs of 6. If Cs is 0, then a branch is never taken. If Cs is 15, then a branch is always taken.

You might have wondered why the Instruction Counter was updated after the instruction was recognized, but before it was executed. This instruction is the reason why. The Instruction Counter can’t be updated until the instruction is recognized. That’s because you don’t know how long the instruction will be until you have seen the opcode. By incrementing the IC before the instruction is executed, the instruction counter gets updated before the branch instruction is executed. When the branch instruction is ready to execute, the IC already contains the address of the instruction immediately following the branch instruction. If the Cs and CC match, then the branch instruction will change the contents of the IC to the contents of the two locations specified by the address in the instruction.

When this instruction is done executing, the IC points to either the instruction following the branch instruction (if no branch is to occur) or the instruction specified by the contents of the location Addr.

Opcode 09 - Compare

09�Addr��This instruction compares the contents of the accumulator with the contents of the two locations starting at the specified address. It sets the condition code (CC) to indicate the result of the compare. If the two values were equal, then CC is set to 1. If the accumulator is greater than the contents of the address, then CC is set to 2. If the accumulator is smaller, CC is set to 4.

Example Program - Pick the largest number

We can now write some more complicated programs than our first one. This program will compare two numbers and select the largest one. It will use Opcode 09 (Compare) and Opcode 08 (Branch). Assume that the two numbers are in locations 100 and 102, and we are to put the largest number in location 104. The instructions and computer diagram are shown in � REF _Ref319579821 * MERGEFORMAT �Figure 4�.

Program walk through

The computer starts out executing the instruction at location 0, which is the Load instruction. This loads the contents of locations 100 & 101 (0099) into the accumulator. Next, the computer stores the accumulator into locations 104 and 105. Next, it compares the accumulator (0099) to the contents of locations 102 and 103 (0002). Since 99 is larger than 2, the Condition Code is set to 2. Next, the Branch instruction compares the CC (2) with the Cs (3) in the instruction. They match, so the Instruction Counter is changed to the contents of locations 106 and 107, which is 0019. This means that the next instruction executed is the Quit instruction at location 19. � REF _Ref318465655 * MERGEFORMAT �Figure 5� shows the state of the computer after the program stops.

Addr	Instr		Explanation

0000	01 0100	Load the first number

0003	02 0104	Assume the first is larger

0006	09 0102	Compare first and second

0009	08 03 0106	If first was larger, we are done

0013	01 0102	Get second number

0016	02 0104	Store second number where largest should be

0019	99		Quit program

Accumulator

 00�00��Instruction Counter

00�00��Condition Code

00��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�01�01�00�02�01�04�09�01�02�08��10�03�01�06�01�01�02�02�01�04�99��

100�00�99�00�02�00�00�00�19�00�00��Figure � SEQ Figure * ARABIC �4�- Computer before finding largest number

Accumulator

 00�99��Instruction Counter

00�20��Condition Code

02��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�01�01�00�02�01�04�09�01�02�08��10�03�01�06�01�01�02�02�01�04�99��

100�00�99�00�02�00�99�00�19�00�00��Figure � SEQ Figure * ARABIC �5�- Computer after finding largest number

Now what if the second number was larger? Let’s assume that locations 102 and 103 contained 0123 instead of 0002. The computer would still do the load, the store, and the compare just like before. Except that this time, the computer would find the accumulator was smaller than the contents of locations 102 & 103. This means that the CC would be set to 4 instead of 2. Then the Branch instruction would decide that the CC (4) doesn’t match the Cs (3), so it wouldn’t change the Instruction Register. The computer would then execute the Load instruction at location 0013, which would place 0123 in the Accumulator. Next, it would store the Accumulator at location 0104, and then execute the Quit instruction at location 0019. � REF _Ref319580679 * MERGEFORMAT �Figure 6� shows the status of the computer after this version of the program.

You might wonder why we assumed that the first number was largest. The answer could be: why not? It is easier to assume that one is larger and change it if you are wrong than to check first and then store the largest number where is should be. Try it yourself and see if you can come up with an easier way to do the same thing.

Accumulator

 01�23��Instruction Counter

00�20��Condition Code

04��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�01�01�00�02�01�04�09�01�02�08��10�02�00�19�01�01�02�02�01�04�99��

100�00�99�01�23�01�23�00�19�00�00��Figure � SEQ Figure * ARABIC �6�- Computer after finding largest number in the second position

You will find that there are many ways to write a program. There is no such thing as the right program. There are many correct programs. As long as you get the right answer, your program is correct. You might be able to improve it: make it faster, use less instructions, etc., but it is still right as long as you always get the right answer. Similarly, there are many wrong programs. In fact, until you get a lot of experience, you will find that you will write more wrong programs than correct ones. Getting your program to work correctly is called debugging. This is the process of finding all the errors or bugs in your programs�.

Representing Characters

You may have noticed that a location can only contain numbers. In fact, they can only contain the numbers from 00 to 99. What about characters? We often want to use text or character strings with computers, so how can we do this? The answer is that we use numbers (called character codes) to represent characters. For example, we will use the number 1 to represent A, the number 2 to represent B, etc. � REF _Ref319668263 * MERGEFORMAT �Figure 7� shows the character codes that we will use.

�0�1�2�3�4�5�6�7�8�9��00��A�B�C�D�E�F�G�H�I��10�J�K�L�M�N�O�P�Q�R�S��20�T�U�V�W�X�Y�Z�Tab�TAB���30��a�b�c�d�e�f�g�h�i��40�j�k�l�m�n�o�p�q�r�s��50�t�u�v�w�x�y�z�ENT�BS�ESC��60�0�1�2�3�4�5�6�7�8�9��70�.�,�/�;�:�‘�“�~�{�}��80�!�@�#�$�%�^�&�*�(�)��90�-�_�+�=�|�\�<�>�?�:��Figure � SEQ Figure * ARABIC �7� - Character Representation Chart

Character codes 27 and 28 represent the tab and shift-tab keys. The character codes 57 through 59 represent the ENTER key, the backspace key, and the escape key.

Character Instructions

Now that we have a way to represent characters, we can look at two instructions that use characters.

Opcode 11 - Read Character

11��This instruction tells the computer to read a character from the keyboard and place its representation (character code) into the accumulator. For example, if the user presses the a character, the accumulator would contain 0031.

Opcode 12 - Write Character

12��This instruction tells the computer to write the character represented in the accumulator onto the screen. For example, if the accumulator contains 0012, then you would see L on the screen.

Sample Program - A Typewriter

Here is sample program that behaves like a typewriter (sort of). The program reads five characters from the keyboard and displays them on the screen. At the same time, the program saves the characters in memory. � REF _Ref319581926 * MERGEFORMAT �Figure 8� shows the starting configuration of our computer before the program starts.

Accumulator

 00�00��Instruction Counter

00�00��Condition Code

00��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�11�02�00�30�12�11�02�00�32�12��10�11�02�00�34�12�11�02�00�36�12��20�11�02�00�38�12�99�98�97�96�95��30�01�02�03�04�05�06�07�08�09�10��Figure � SEQ Figure * ARABIC �8�- Computer before reading 5 characters from the keyboard

Program walk-through

Accumulator

 00�08��Instruction Counter

00�01��Condition Code

00��Since the instruction counter is zero, the computer checks the contents of location zero for the first instruction. It finds an 11, which is the read character instruction. Since the instruction is one location long, the IC is updated to 0001, and the computer waits for the user to type a character on the keyboard. Assuming the user types an “H”, the accumulator will contain 0008, which is the character code for a capitol H.

Accumulator

 00�08��Instruction Counter

00�04��Condition Code

00��The computer then looks at location 1 to see the next instruction. It finds a 02, which is the opcode for the store instruction. The store instruction is 3 locations long, so the IC is updated to 0004. The computer gets the rest of the instruction: 02 0030, and stores the accumulator into locations 30 and 31. Location 30 has a zero, and 31 has an 8.

The computer goes to location 4 and finds a 12, which is the opcode for the write character instruction. That instruction is one location long, so the IC is set to 0005, and a capitol ‘H’ is written on the screen.

Since the IC is now 5, the computer gets the contents of location 5 and finds an 11, which is the read character instruction. The instruction is one location long, so the IC is updated to 6, and the computer waits for the user to type a character on the keyboard. Assuming the user types a ‘e’, the accumulator is set to 0035.

This process repeats for the rest of the message:

Loc.	Instruction	Explanation

0006	02 0032		Store 0035 in locations 32 and 33.

0009	12		Write ‘e’ on the computer screen.

0010	11		Read ‘l’ (42) from the computer keyboard

0011	02 0034		Store 0042 in locations 34 and 35

0014	12		Write ‘l’ on the computer screen

0015	11		Read ‘l’ (42) from the computer keyboard

0016	02 0036		Store 0042 in locations 36 and 37

0019	12		Write ‘l’ on the computer screen

0020	11		Read ‘o’ (45) from the computer keyboard

0021	02 0038		Store 0045 in locations 38 and 39

0024	12		Write ‘o’ on the computer screen

0025	99		Terminate program

When done, the computer screen contains the word “Hello” and the computer looks like � REF _Ref318473640 * MERGEFORMAT �Figure 9�.

Accumulator

 00�45��Instruction Counter

00�26��Condition Code

00��Memory

Location�0�1�2�3�4�5�6�7�8�9��00�11�02�00�30�12�11�02�00�32�12��10�11�02�00�34�12�11�02�00�36�12��20�11�02�00�38�12�99�98�97�96�95��30�00�08�00�35�00�42�00�42�00�45��Figure � SEQ Figure * ARABIC �9� - Computer after reading 5 characters from keyboard

The Immediate Family of Instructions

The immediate family of instructions are similar to the previous instructions. Both sets of instructions use three locations. The difference is that the immediate instructions use the two locations to specify the actual value to be used, while the other instructions use them to specify the address of the location containing the value. For example, the instruction 03 0100 (Add) tells the computer to add the contents of location 100 to the accumulator. However, the instruction 13 0100 (Add Immediate) tells the computer to add 100 to the accumulator. When you look at the example programs, this will become more clear.

Opcode 13 - Add Immediate

13�Val��This instruction tells the computer to add the value represented by the next two locations after the instruction opcode to the value of the accumulator. For example, if the accumulator contains 1234 and the instruction is 13 0010, then the value of the accumulator will be 1244. The condition code is set the same as the Add instruction.

Opcode 14 - Subtract Immediate

14�Val��This instruction tells the computer to subtract the value represented by the next two locations after the instruction opcode from the value of the accumulator. The condition code is set the same as the Add instruction.

Opcode 15 - Multiply Immediate

15�Val��This instruction tells the computer to multiply the accumulator by the value represented by the next two locations after the instruction opcode. The condition code is set the same as the Add instruction.

Opcode 16 - Divide Immediate

16�Val��This instruction tells the computer to divide the accumulator by the value represented by the next two locations after the opcode. The remainder is discarded the same as in the 06 (Divide) instruction. The condition code is set the same as the Add instruction.

Opcode 17 - Modulo Immediate

17�Val��This instruction tells the computer to divide the accumulator by the value represented by the next two locations and leave the remainder in the accumulator instead of the answer. (See the 07 - Modulo instruction.) The condition code is set the same as the Add instruction.

Opcode 18 - Branch Immediate

18�Cs�Loc��This instruction is similar to 08 (Branch on Condition), except that the IC is set to the value specified by the rest of the instruction. The effect of this instruction is that if the condition code matches the Cs specification, the next instruction executed will be the one at the location specified by the two locations following the opcode. For example, the instruction 18 01 0000 causes the computer to branch to location 0 if CC is 1.

Opcode 19 - Compare Immediate

19�Val��This instruction is similar to 09 (Compare), except that the accumulator is compared with the value represented by the next two locations after the opcode. For example, if the instruction is 19 0010, then the contents of the accumulator is compared to the number 10. This instruction sets the condition code the same as the 09 (Compare) instruction.

Opcode 20 - Set Accumulator

20�Val��This instruction sets the accumulator to the value represented by the next two locations after the opcode. For example, if the instruction is 20 1234, then the accumulator will be set to 1234. The condition code is not set.

More Sample Programs

Sample Program - Testing and Branching

This sample program demonstrates how to use the Condition Code register (CC) and the Branch Conditional instructions. We will read a line of text from the keyboard and display it on the computer screen. The program will keep reading from the keyboard and displaying whatever is typed until the user hits the ENTER key. Before we show you the program itself, let’s examine what we have to do:

Read a character from the keyboard

If the character is an ENTER key, we are done

If the character isn’t an ENTER key, display the character on the screen

Go back to step 1

Some of these steps map directly into instructions. For example, step 1 is obviously a read character instruction. Step 2 is a compare of the accumulator with the character code for ENTER followed by a branch if the two were equal. Step 3 is a write character instruction. Step 4 is an unconditional branch. If we write those instructions out we get what you see below. Notice when writing a program, if you want to branch backward, you can determine the location by looking at what you have written. When you want to branch forward, however, you won’t know what the address is until you have written that part of the program. When we first wrote the branch at location 4 below, we didn’t know where we were branching to until we actually wrote the quit instruction.

Loc	Instr		Explanation

0000	11		Read character from the keyboard

0001	19 0057	Compare character to ENTER key (57)

0004	18 01 ????	Branch if they are equal so we can quit (will be to location 0013)

0008	12		Write character on computer screen

0009	18 15 0000	Branch back to read a character

0013	99		Quit

Try to diagram the way the computer would look before the program started, and then walk through the program to make sure it works. Sketch the computer status at the end of the program as well.

Exercises - Try your hand at it

Here are some problems to try for yourself. Determine what you have to do, write the programs, draw diagrams of the computer before your program starts and after it is all done. Check your work by walking through the program.

Write a program to add three numbers together.

Write a program to determine if a number is even or odd. (Hint: If you use the modulo instruction and the number 2, the remainder will be zero if even, and 1 if odd.) Write a message on the computer screen saying ‘even’ or ‘odd’.

Write a program to read a 4 digit PIN (Personal Identification Number - like what you use with your MAC card.) from the keyboard and display an ‘X’ for each key that is pressed. Store the PIN characters in memory starting at location 100.

Write a program to zero out memory (store all zeros) from locations 100 to 200. Hint: initialize a storage location (say location 50) to 0100, then use the store instruction 03 0050 to write zero into location 100. Then add one to location 50 (load, add 1, and then store back into the location). Keep this up until the number passes to 200.

If you run into trouble, try listing what you have to do in very small steps, map each step into instructions, and then write out the instructions along with the actual addresses. Once you are done, check your work by performing a walk through of your code.

� Actually, a computer only understands two numbers: zero and one. However, to make it easier for you to understand what a computer is doing, we will pretend that it understands numbers the way that we do.

� Electronic boards and circuits and other such stuff is usually called hardware. These are things that you can touch or feel. They are hard. This is different from software, which are the programs that actually run the computer.

� Disk drives are storage devices that allow you to store data for a long time. The two most common types are floppy disks, which hold a small amount of data, and hard disk drives, which are usually located inside your computer and hold large amounts of data. Floppy disks are either 3 1/2” square with hard plastic cases or 5 1/4” square inside a cardboard case. The big ones actually flop when you wiggle them, which is where they get their name.

� RAM stands for Random Access Memory. This is memory that the computer can look at as well as change. Other kinds of memory are ROM - Read Only Memory which the computer can look at (read) but can’t change (write). When you buy a computer, it almost always has some ROM which contains circuits (called instructions) that make your computer behave the way it should.

� A disk is divided into directories and files. Directories are collections of files. A file is either a computer program or some data that can be used by a computer program. You can think of a disk as a filing cabinet, a directory as a drawer in that cabinet, and a file as a folder in the drawer.

� If you are running a program from a floppy disk, then the computer will copy the program from the floppy disk into memory. That’s why we said earlier that a computer can run without a hard disk, but it can’t run without memory.

� This is often called the “fetch, defer, execute” cycle. The computer fetches an instruction (or at least part of an instruction) from memory, determines how much more it has to do in order for the instruction to execute (e.g., read the rest of the instruction from memory), does whatever needs to be done, and then finally executes the instruction.

� Program errors are called “bugs”. The reason for this goes back to the early days of computers when they were made out of wires, switches, tubes, and all kinds of other electrical stuff. Some programmers were having problems with their computer, and they found a moth had gotten inside the computer and shorted out a circuit. From then on, when they were having problems, they would say they were looking for another bug.

A Simple Computer Machine		Page � PAGE �13�

Bill Pringle		Fundamentals of Computing

	(c) Copyright 1995

